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Abstract. We propose a novel convolutional network architecture that
abstracts and differentiates the categories based on a given class hier-
archy. We exploit grouped and discriminative information provided by
the taxonomy, by focusing on the general and specific components that
comprise each category, through the min- and difference-pooling opera-
tions. Without using any additional parameters or substantial increase in
time complexity, our model is able to learn the features that are discrim-
inative for classifying often confused sub-classes belonging to the same
superclass, and thus improve the overall classification performance. We
validate our method on CIFAR-100, Places-205, and ImageNet Animal
datasets, on which our model obtains significant improvements over the
base convolutional networks.
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1 Introduction

Deep convolutional neural networks (CNNs) [12-14, 18] have received much at-
tention in recent years, due to its success on object categorization and many
other visual recognition tasks. They have achieved the state-of-the-art perfor-
mances for challenging categorization datasets such as ImageNet [3], owing to
their ability to learn compositional representations for the target tasks, through
multiple levels of non-linear transformations. This multi-layer learning is biolog-
ically inspired by the human visual system that also processes the visual stimuli
through a similar hierarchical cascade.

However, while the deep CNNs closely resemble such low-level human visual
processing systems, they pay less attention to the high-level reasoning employed
for categorization. When performing categorization, humans do not treat each
category as an independent entity that is different from everything else. Rather,
they understand each object category in relation to others, performing general-
ization and specialization focusing on their commonalities and differences, either
through observations or by the learned knowledge.

For example, consider the images of animals at the bottom of Figure 1. Each
image shows a different animal species (e.g. cheetah, jaguar, leopard). How can
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Fig. 1: Concept: Our taxonomy-regularized deep CNN learns grouped and discrimina-
tive features at multiple semantic levels, by introducing additional regularization layers
that abstract and differentiate object categories based on a given class hierarchy. 1)
At the generalization step, our network finds the commonalities between similar object
categories that help recognize the supercategory, by finding the common components
between per-category features. 2) At the specialization step, our network learns sub-
category features as different as possible from the supercategory features, to discover
unique features that help discriminate between sibling subcategories. These generaliza-
tion and specialization layers work as regularizers that help the original network learn
the features focusing on those commonalities and differences.

we tell them apart? We first notice that all these three animals have distinctive
feline features, and have spots (i.e. discovery of commonalities). Then, since
those common properties are no longer useful to discriminate between the ani-
mals, we start focusing on the properties that are specific to each animal, which
are disjoint from the common properties that are shared among all the three an-
imals. For example, we notice that they have different shapes of spots, and the
leftmost animal has a distinctive tear mark. This fine-grained discrimination is
not directly achieved by the low-level visual processing, and requires deliberate
observations and reasoning.

How can we then construct a CNN such that it can mimic such high-level hu-
man reasoning process? Our idea is to implement the generalization/specialization
process as additional regularization layers of the CNN, leveraging the class struc-
ture provided by a given taxonomy. Specifically, we add in multiple superclass
layers on top of the CNN, which are implemented as channel-wise pooling lay-
ers that focus on the components shared by multiple sub-categories, which we
refer to as min-pooling. After this generalization process, our network performs
specialization for each subcategory through difference-pooling between it and its
superclass. It enforces the network to learn unique discriminative features for
each object category (See Figure 1).

These two pooling layers can be readily integrated into any conventional CNN
models, to function as regularizers. We validate our taxonomy-regularized CNN
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on multiple datasets, including CIFAR-100 [11], Places-205 [25], and ImageNet
Animal datasets [22], and obtain significant performance gain over the base CNN
models such as AlexNet [12] and NIN [14].

Our contributions are threefold:

1. We show that exploiting grouped and discriminative information in a seman-
tic taxonomy helps learn better features for CNN models.

2. We propose novel generalization and specialization layers implemented with
min- and difference-pooling, which can be seamlessly integrated into any
conventional CNN models.

3. We perform extensive quantitative and qualitative evaluation of our method,
and show that the proposed regularization layers achieve significant classifi-
cation improvement on multiple benchmark datasets such as CIFAR-100 [11],
Places-205 [25], and ImageNet Animal datasets [22].

2 Related Work

Using semantic taxonomies for object categorization. Semantic taxonom-
ies have been extensively explored for object categorization. Most existing work [1,
5, 15] exploits the tree structure for efficient branch-and-bound training and pre-
diction, while a few use taxonomies as sources of relational knowledge between
categories [24, 6,9, 2]. Our method shares the same goal with the latter group of
work, and especially focuses on the parent-child and sibling-sibling relations.

Deep convolutional neural networks. Deep CNNs [13] have recently
gained enormous popularity for their impressive performance on a number of
visual recognition tasks. Since Krizhevsky et al. [12] won the ImageNet ILSVRC
challenge 2012 [3], many variants of this model have been proposed. GoogLeNet [21],
and VGGNet [18] focus on increasing the network depth by adding more convo-
lutional layers to the original model. Lin et al. [14], propose a model structure
called Network In Network (NIN) to train non-linear filters with micro neural
networks in convolutional layers, and replace the fully connected layers by global
average pooling on per-category feature maps. Our model benefits from these
recent advances in deep CNNs, as it can leverage any one of these deep networks
as the base model.

Some existing work has explored the tree structure among tasks to regular-
ize the learning of deep neural networks. Salakhutdinov et al. [17] propose to
learn hierarchical Dirichlet process prior over the top-level features of a deep
Boltzmann machine, which enables the model to generalize well even with few
training examples. Srivastava and Salakhutdinov [19] further extend this idea
to the discriminatively learned CNN, with both predefined and automatically-
constructed tree hierarchies using Chinese Restaurant Process. However, these
models only work as priors and do not exploit discriminative information in a
class hierarchy that our model aims to learn. Recently, Yan et al. [23] propose a
two-staged CNN architecture named HD-CNN, which leverages the taxonomy to
separate the categories into easy coarse-grained ones and confusing fine-grained
ones, trained in separate networks. However, such separate learning of coarse
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and fine grained categories results in larger memory footprints, while our model
seamlessly integrates the two with minimal increase in memory usage. The main
novelties of our approach in this line of research are twofold. First, we propose a
generic regularization layers that can be merged into any types of CNNs. Second
and more importantly, we exploit the tree structure to learn discriminative prop-
erties not only between supercategories, but also between sibling subcategories
belonging to the same parents.

Discriminative feature learning by promoting competition. Some re-
cent work in multitask learning focuses on promoting competitions among tasks
to learn discriminative features per each task. Zhou et al. [27] introduce an exclu-
sive lasso that regularizes the original least square objective with a £3-norm over
f1-norm on parameters, which encourages competition for the features among
different tasks. The orthogonal transfer proposed in [26] leverages the intuition
that the classifiers in parent and child nodes of a taxonomy should be different, by
minimizing the inner product of the parameters of a parent and a child classifier.
A similar idea is explored in [7] in the context of metric learning, but the ap-
proach of [7] selects disjoint features instead of simply making the parameters to
be different. This idea is further extended to the case of multiple taxonomies [§],
where each taxonomy captures different sets of semantically discriminative fea-
tures, which are combined in the multiple kernel learning framework. A recent
work [9] also proposes a similar constraint, to relate the category embeddings
learned for both the parent and child, and the sibling classes. Our idea shares a
similar goal for learning unique and discriminative features for each class, but it
is implemented with a much simpler means of pooling, which fits well into the
CNN framework unlike all the other previous frameworks.

3 Architecture

Our goal is to exploit the class hierarchy information to learn grouped and dis-
criminative features of categories in a deep convolutional neural network (CNN).
We tackle this problem by augmenting the base CNN architecture with two ad-
ditional generalization and specialization layers, which regularize the learning
of the network to focus on the general and specific visual properties between
similar visual object classes.

Figure 2 illustrates the overview of our network. We assume that a taxonomy
of object categories is given as side information, which is either human-defined
or constructed from data, and the base network is able to generate a feature map
(or a vector) for each category. We will further discuss the details of base models
in Section 3.1. Then, leveraging the class structure in the given taxonomy, our
model imposes additional layers on top of these per-category feature maps (or
vectors), to regularize the learning of the original network.

The first set of layers are generalization layers, which have the same structure
with the given hierarchy 7. They mimic the human generalization process that
learns increasingly more general and abstract classes by identifying the com-
monalities among the classes. Specifically, our network learns the feature maps
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Fig. 2: Overview of our taxonomy-regularized CNN. Our network computes per cate-
gory feature maps (in green dotted boxes) from the base CNN, and feed them into the
taxonomy-regularization layers. Then, the regularization sub-network that is organized
by the structure of the given taxonomy first learns supercategory feature maps that
capture shared features among the grouped classes through min-pooling (generaliza-
tion), and then learn exclusive feature maps for each child class that are disjoint from
its parent class through difference-pooling (specialization). Rectangles indicate feature
maps; red and blue arrows denote min- and difference-pooling respectively.
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of generalization layers by recursively applying the channel-wise min-pooling op-
eration to grouped subclass feature maps guided by the taxonomy 7. Thus, each
superclass feature map can identify the common activations among its child sub-
class feature maps. The generalization layers are learned to minimize the loss
of superclass classification (i.e. classifying each superclass from all the other
superclasses on the same level) (Section 3.2).

On top of the generalization layers are the specialization layers, which have
the inverse structure of generalization layers (See Figure 2). The specialization
layers uniquely identify each object class as a specialization of a more generic
object class. These layers learn a unique feature map for each subclass that
is not explained by the feature map of its parent through difference-pooling,
which computes the difference between each subclass feature map and its parent
feature map. The specialization layers are learned to minimize the loss of subclass
classification (Section 3.3).

Throughout the paper, we use [ = 1,--- | L to denote the level of taxonomy
hierarchy (L for the leaf and 1 for the root), K; for the number of nodes at level
l, n{“ for the k-th node of the tree at level [, and cf for children nodes of nf

3.1 Base Network Models

We can use any types of CNN models as our base network. However, instead
of directly using it, we make a small modification to the last convolutional
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Fig. 3: Illustration of min- and difference-pooling. (a) The min-pooling operation com-
putes the elementwise minimums across multiple subcategory feature maps. (b) The
difference-pooling computes the elementwise differences between the feature maps of
each subcategory and its parent.
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layer, where we learn a per-class feature map M f € R" ¥ for each class k €
{1,---,C}, where h and w are the height and width of the feature map, and
L in the subscript denotes that this feature map is for a base-level class. Note
that the per-class features are not required to be two-dimensional maps, but can
be one-dimensional vectors (h = 1). However, for generality we assume that the
features are 2D maps, since this assumption is necessary for some CNN architec-
tures (e.g. Network in Network (NIN) [14]). For architectures such as AlexNet
that do not generate per-category feature maps, we can easily get such a network
by simply adding convolutional layer having them to the last convolutional layer.
The feature map of each class is linked to the softmax loss layer through a
global average pooling layer [14], which simply computes a single average value of
all entries of an input feature map M (i.e. 7= > M (i, j)). The main role of the
global average pooling is to learn the network such that each category-specific
feature map produces high response for the input images of that category.

3.2 Min-Pooling for Superclasses

We learn the feature map for each superclass by exploiting the commonalities
among the subclasses that belong to it(e.g. superclass big cat for subclasses tiger,
lion, and jaguar). This is implemented by the min-pooling operation across sub-
class feature maps. The min-pooling simply computes the element-wise minimum
over all input siblings’ feature maps. Equation 1 and Figure 3.(a) describe the
min-pooling: ,

MY (i, 5) = min{ M} (i, ) bt (1)

where M} (i, j) is the (i, j)-th element of feature map for class node nf, and CJ*
is the set of its children.

This operation captures features that are common across all children sub-
classes, but not unique to any of them, which can be captured by difference-
pooling in next section. For example, in Figure 1, using min-pooling on the
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feature maps captures only feline-features, such as the shape of the face and
light brown color of their fur, but not their distinctive spots.

We attach the global-average pooling layer and then the softmax layer on
top of the min-pooled superclass feature maps. Next we minimize the superclass
loss, which learns the superclass feature maps to focus on the common properties
of its children, which in turn propagate to lower layers.

Min- vs. max-pooling. Max-pooling is a more widely used downsampling
method for object recognition using deep CNNs (e.g. [12]). However, it is not
useful in our case where we aim to find general components across multiple object
categories. For example, applying max-pooling on the category maps of the three
animals in Figure 1, would capture unique spot patterns for each animal as well
as the general feline features. This helps recognize the superclass big cat better,
but does not help discriminate between the subclass categories, since the model
does not know which are common and which are unique.

3.3 Difference-Pooling between Parent and Child Classes

Between each subcategory and its parent, we focus on finding the features
that are as different as possible. Since the feature map of the parent cap-
tures the commonality between siblings, its activations may not be so useful
for inter-subcategory discrimination. Thus we apply the difference-pooling be-
tween the response maps of the parent and its child subcategories. It retrieves
the subcategory-specific entries that are not used in its parent response map.

Equation 2 and Figure 3.(b) describe the difference-pooling between a parent
and its children. The feature map D} (4, 5) for node n} of the difference-pooling
layer between a parent and a child is defined as

DF(i,j) = M (i,5) — M, (i,5), st. kecl,. (2)

The difference-pooling reduces the effect of supercategory-specific features,
and thus makes the subcategory discrimination less dependent on supercategory-
specific features. It in turn promotes learning the features that are required for
fine-grained categorization at lower layers of the CNN.! As with the superclass
feature maps, we attach the global average pooling and multinomial classifica-
tion loss layers to the diff-pooling layers. This enforces the network to learn
discriminative features that uniquely identifies each object category.

3.4 Unsupervised Construction of a Taxonomy

While the taxonomies for most generic object categories can be obtained from
semantic taxonomies such as WordNet [16], such predefined taxonomies may

1 We also test XOR-pooling that assign 0 to the elements of the children feature
maps that are also selected at the parent feature map. However, in our experiments,
the XOR-pooling results in a worse performance than diff-pooling, perhaps due to
excessive sparsity.
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be unavailable for domain-specific data. Furthermore, the semantic taxonomies
do not always accurately reflect the feature distributions in the training set.
Therefore, we propose a simple taxonomy construction method by examining the
activations of the feature maps in the base network. Note that we do not declare
this method as our major contribution, but as will be shown in experiments, it
performs successfully when no taxonomy is available.

The key idea is to group the classes that have the similar activations of feature
maps, because those are the confusing classes that we want to discriminate. First,
we learn a base network using the original category labels, as done in normal
image classification. We then define activation vector g* for each category k by
averaging the feature response maps for its training images. Next we perform
agglomerative clustering on {g*}{_, using l» distance metric and Ward’s linkage
criteria. Once we obtain the dendrogram between categories, we can cluster
them for any given K number of clusters, which become the superclasses and
their members become subclasses. A single application of such agglomerative
clustering can generate a two-level taxonomy. We can recursively apply this
operation to obtain a multi-level taxonomy.

3.5 Training

We attach a softmax loss layer to every level of min- and diff- pooled layers via
global average pooling layers (See Figure 2). With the superclass classification
loss, the feature maps generated by min-pooling is learned to preserve spatially
consistent information across subclasses that belong to the same superclass. That
is, the activations on those feature maps are unique to the group of subclasses,
and not possessed by other superclass groups. However, the superclass loss can
at the same time hamper the network from learning the representation that
discriminates between the subclasses that belong to the same group. Thus we
add in an additional loss layer on top of the diff-pooling layer, which is the
classification loss over the classes in same level.

The resulting network has multiple loss layers including the loss layers for
the base-level classes, subclasses, and superclasses. However, since we are mostly
interested in improving on the base-level categorization accuracy, we balance the
contribution of each loss by giving different weights so that the additional losses
for min-pooled and diff-pooled layers act as regularizers. The combined loss term
is described as follows:

L L
C=0p+Y wler + > wie. (3)
=2 =2

where {7, is the original base-level categorization loss, ¢ are the losses from
min-pooled layers for superclasses, ff are the losses from diff-pooled layers for
subclasses, and w;", w? are weights for each loss term.?

2 Our experiments reveal that the network is not sensitive to these balancing param-
eters, as long as the base-level categorization loss has a higher weight than others.
That is, w™, wi < 1.
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We implement the min- and diff-pooling layers on top of the publicly avail-
able Caffe [10] package. Note that the added pooling layers do not introduce any
new parameters and the only additional computational burden is on computing
the min- and diff-pooling; thus the increase in memory and computational com-
plexity is minor compared to the original model. The increase in space and time
complexity depends on an employed tree structure, specifically on the number of
internal nodes. If the number of classes at all levels is C' and the memory usage
of per class feature maps is U, then the increase in the space complexity will be
O(CU), where the worst case happens if the given tree is a full binary tree.

In our experiments, the increase in memory usage is less than 3% and the
increase in training time is 15% at maximum, compared to those of the base
networks. The HD-CNN [23], which is a similar approach that makes use of
hierarchical class information, on the other hand, increases the memory usage
and the training time by about 50% and 150% each. Thus, our model is more
scalable with a much larger number of classes, with a large and complex class
hierarchy. Also further speed-up can be achieved with a parallel implementation
of the additional layers, although our current implementation does not fully
exploit the parallelism on the problem.

4 Experiment

We evaluate the multiclass classification performance of our approach on multiple
image datasets. Our main focus is to demonstrate that the taxonomy-based
generalization and specialization layers improve the performance of base CNN
models, by learning the discriminative features at multiple semantic granularity.

4.1 Dataset

CIFAR-100. The CIFAR-100 [11] consists of 100 generic object categories (e.g.
tiger, bed, palm, and bus), and has been extensively used for the evaluation of
deep neural networks.? It consists of 600 images per category (i.e. 60,000 images
in total) with a size of 32x32, where 500 images are used for training and the
remaining 100 images are for testing. We pre-process the images with global
contrast normalization and ZCA whitening as done in [14,23]. For taxonomy,
we use the trees provided in [11], [19], and another one discovered using our tree
construction method in Section 3.4.

Places-205. The Places dataset [25] contains 2,448, 873 images from 205 scene
categories. The set of scene classes includes both indoor scenes (e.g. romantic
bedroom, stylish kitchen) and outdoor scenes (e.g. rocky coast, and wintering
forest path). We use the provided training and test splits by [25] for our ex-
periments. For taxonomy, we use the discovered class hierarchy using our tree
construction method since no predefined one exists for this dataset.

3 http://rodrigob.github.io/are_we_there_yet/build/classification_
datasets_results.html.
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Fig. 4: Left: The classification results on the CIFAR-100 dataset. We report top-1 and
top-5 accuracy in percentage. Right: The classification accuracy with different number
of training images per label.

ImageNet Animal. ImageNet 1K/22K Animal datasets, suggested in [22],
are subsets of the widely-used ImageNet dataset [3]. For ImageNet 1K Animal
dataset, we select all 398 animal classes out of the ImageNet 1K and split the
images into 501K training images and 18K test images. For ImageNet 22K Ani-
mal dataset, we collect 2,266 animal classes out of all ImageNet 22K classes; we
only consider the classes that have more than 100 images and are at leaf nodes
of ImageNet hierarchy. The dataset consists of 1.6M training images and 282K
test images. Our ImageNet 22K Animal dataset has slightly different number of
classes from [22] (2,282 classes), but the difference is less than 1%. For taxonomy,
we use the generated class hierarchy instead of the existing ImageNet hierarchy
since the ImageNet class hierarchy is largely imbalanced and overly deep.

As for tree depth in automatic hierarchy construction, we experimentally
found that the optimal value is around log,, k, where k is the number of classes;
we used 2-level trees for CIFAR-100 and Places-205, and a 3-level tree for Ima-
geNet 22K-Animals that comes with 2K classes.

4.2 Quantitative Evaluation

Results on CIFAR-100. Figure 4 shows the classification results of our method
and the baselines on the CIFAR-100 dataset. As our base model, we use the
Network-in-Network-triple denoted by (NINtri), which is the same as the orig-
inal Network-in-Network model in [14], except that it has three times of the
number of filters in the original network. This network is also used as a baseline
in [23], in which the HD-CNN results in a lower accuracy than the NIN-triple,
perhaps due to the difference in the number of learning parameters. We report
the performance of our NIN-triple model regularized with different taxonomies.
We use three different class hierarchies from [11], [19], and our tree construction
method (denoted by a suffix +TreeClust). The performance varies depending on
which taxonomy we use, but all of our models outperform the base NIN-triple.
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Table 1: Classification results on the Places-205 dataset.
Method Top-1 Top—5‘ Method Top-1 Top-5

Places-AlexNet [25] 50.04 81.10 Places-NIN 43.46 75.00
(Ours:AlexNet+TreeClust) 51.14 81.85|(Ours:NIN+TreeClust) 45.78 76.78

Table 2: Classification results on the ImageNet 1K /22K animal dataset.
Dataset / Method Xiao et al. [22] AlexNet-pretrained (Ours)
Imagenet 1K Animal 63.2 66.46 67.53
Imagenet 22K Animal 51.48 50.82 51.91

We obtain the best result using the class hierarchy in [11], which outperforms
NIN-triple by 1.7%p. This increase is larger than 0.35%p reported in [19], and
we attribute such larger enhancement to the exploitation of discriminative in-
formation from the taxonomy, through the proposed two pooling methods.

The performance can be further improved by ensemble learning with multiple
taxonomies. We obtain a bagging predictor by simply averaging out the predic-
tions of the models with the three taxonomies, and this ensemble model denoted
by (Ours:NINtri+Ensemble) achieves 71.81% of accuracy, which is significantly
higher than the base network NIN-triple by 4.15%p.

Results on Places-205. Table 1 shows the classification results on the
Places dataset. As base networks, we test the NIN [14] and the AlexNet [12]
trained on ILSVRC2012 dataset. Since no pre-trained model is publicly avail-
able for the Places dataset, we fine-tune those base models on the Places dataset,
which we report as Places-Alexnet and Places-NIN. We generate the tree hier-
archy using the method in Section 3.4, and then fine-tune each base network
with the proposed generalization and specialization layers. Our tree-regularized
networks outperform the base networks by 1.10%p (Ours:Alexnet) and 2.32%p
(Ours:NIN), which are significant improvements.

Results on ImageNet Animal. Table 2 shows the classification results
on ImageNet Animal datasets. We first pretrain the AlexNet on the ImageNet
1K /22K Animal datasets, reported as AlexNet-pretrained. From the learned
base model, we generate the class hierarchy using our tree construction method.
We then learn our tree-regularized network by fine-tuning the pretrained base
AlexNet with the hierarchy. The resulting network outperforms [22] by 4.33%p
in ImageNet 1K Animal, and by 0.43%p in ImageNet 22K Animal dataset. Also
our network increases the performance of the base AlexNet model more than 1%
in the both datasets.

On all datasets, our method achieves larger improvements in top-1 accuracy
rather than in top-5 accuracy, which suggest that the key improvement come
from the correct category recognition at the fine-grained level. This may be due
to our model’s ability to learn features that are useful for fine-grained discrimi-
nation from class hierarchy, through min- and diff-pooling.
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Table 3: Hierarchical precision@k results on the CIFAR-100 dataset.

Method hp@l hp@2 hp@5
Network in Network-triple (NINtri) [23] 67.66 56.64 71.31
Ensemble of NINtri [23] 70.58 55.06 64.82
(Ours:NINtri+min-only) 67.74 60.34 79.19
(Ours:NINtri+Tree[11]) 69.36 62.33 79.71
(Ours:NINtri+TreeClust) 68.82 59.15 78.18
(Ours:NINtri+Tree[19]) 68.32 61.05 77.99
(Ours:NINtri+Ensemble) 71.81 57.85 67.44

Accuracy as a function of training examples. One can expect that our
taxonomy-based regularization might be more effective with fewer training ex-
amples; to validate this point, we experiment with different number of training
examples per class on CIFAR-100 dataset. We learn our model using 50, 100,
250, and 500 training examples, and plot the accuracy as a function of number
of examples in Figure 4 (right). The plot shows that our model becomes increas-
ingly more effective than the base network when using less number of training
examples. The largest relative performance gain using our model occurs when
using as few as 50 training examples, outperforming the baseline by around 3%p.

Semantic prediction performance using hp@k. To validate that our
tree-regularized network can obtain semantically meaningful predictions, we also
evaluate with the hierarchical precision@k (hp@k) introduced in [4], which is a
measure of semantic relevance between the predicted label and the groundtruth
label. It is computed as a fraction of the top-k predictions that are in the cor-
rect set, when considering the k nearest classes based on the tree distance. For
detailed description of the hp@k measure, please refer to [4]. Table 3 shows the
results on the CIFAR-100 dataset.

We observe that our taxonomy-regularized network obtains high hierarchical
precisions, outperforming the base network by more than 7%p, using the seman-
tic taxonomy from [11]. The improvement is less when using the constructed
tree, but our network still outperforms the non-regularized base network. This
performance gain in the semantic prediction mostly comes from the use of min-
pooling, which groups the relevant classes together, with the diff-pooling also
contributing to some degree with accurate discrimination of fine-grained cate-
gories. This point is clearly observed by comparing with the result of min-pooling
only with the result of the full model (i.e. the third and fourth rows of Table 3).

4.3 Qualitative analysis

Figure 5 shows selected examples of class prediction made using our model and
the baseline NIN [14] network on the CIFAR-100 and the Places dataset. We
observe that in many cases, our network predicts more semantically relevant
categories in the top-5 predictions (See Figure 5.(a-d)). This is even true for
the failure case of Figure 5.(e), where the top-5 classes predicted by our model
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Fig. 5: Example predictions for the CIFAR-100 dataset (left column) and the Places-
205 dataset (right column). For each image, we show the top-5 prediction result using
our model and the base network (NIN). The last row shows failure cases.
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Fig. 6: Response maps for the subclasses that belong to the same superclasses in the
ImageNet 22K Animal dataset for a given test instance. We superimpose the per-
category, min-pooled, and diff-pooled response maps of these sibling classes on top of
each input image. The correct feature map for each input image is highlighted in red.

(i.e. woman, girl, man, boy, and baby) are all semantically relevant to the correct
class girl. On the other hand, the results of the base network include semantically
irrelevant categories such as skunk and flatfish in the top-5 predictions. Also, our
model is less likely to confuse between similar classes, while the base network
is more prone to misclassification between them. Hence, the base network that
often lists correct categories in the top-5 predictions still fails to predict the
correct top-1 category (See Figure 5.(a-d)).

To further analyze where the improvement in classification performance comes
from, we examine the response maps for the subcategories that share the same
parent categories, in Figure 6. From ImageNet 22K animal dataset, we select
one supercategory, moth, for which we select three subcategories. Note that the
original feature maps do not represent discriminative activations, but diff-pooled
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Fig. 7: Image segmentation results on the CIFAR-100 test images. Our network gen-
erates tighter segmentation boundaries compared to the base network.

activations clearly capture discriminative local properties for each subcategory.
For example, in the moth subclasses, we can see that the diff-pooled activation
maps exclusively focus on the wing patterns which are important for distinguish-
ing different moth species. This example confirms that the hierarchical regular-
ization layers can indeed capture discriminative traits for the subclasses, thus
significantly eliminating confusions between subcategories.

We also compare between the feature maps learned by the base model NIN
and our approach on the CIFAR-100 dataset, in Figure 7. Since the base network
NIN has only convolution layers except for the last classification loss layer, the
forward pass can preserve the spatial information. Therefore, we can segment an
image by using activations of the feature map on the image. We show segmen-
tation results in Figure 7. The segmentations by our method are qualitatively
better, as they focus more on the target objects compared to the base network,
which often generates loose and inaccurate segmentations. These results assure
our taxonomy-based model’s ability to learn unique features for each category,
rather than learning features that are generic across all the categories.

5 Conclusion

We propose a regularization method that exploits hierarchical task relations to
improve the categorization performance of deep convolutional neural networks.
We focus on the task relations between the prediction of a parent and child
classes in a taxonomy, and learn features common across semantically related
classes through min-pooling, then learn discriminative feature maps for each
object class by performing difference-pooling between the feature maps of each
child class and its parent superclass. We validate our approach on the CIFAR-
100, the Places-205, and the ImageNet Animal datasets, on which it achieves
significant improvement over the baselines. We further show that our taxonomy-
regularized network makes semantically meaningful predictions, and could be
more useful when the training data is scarce.
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