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Abstract—1In this paper, we propose a mapping and naviga-
tion method for mobile robots with low computational resources
and limited memory capacity. The proposed navigation method
is based on topological mapping of visual features for its
compact representation and robustness in localization. In order
to improve the localization accuracy and minimize the memory
requirement, we propose the use of visual features from nearby
objects. This paper presents a new topological map, called an
actionable topological map, which is constructed using visual
features from nearby objects and motion information between
places in the map. By incorporating motion information, we
make it easier for a robot to navigate using the compact
representation of a topological map. The proposed method is
suitable for light-weight, low-cost robotic platforms due to its
low computational and space requirements. We demonstrate
the effectiveness of our approach in experiments using an
inexpensive, off-the-shelf robotic platform.

I. INTRODUCTION

Localization and mapping are the most fundamental prob-
lems in robotics and solutions to these problems are required
for many practical robotic applications [1]. When a robot
enters an unknown place, it is required to localize itself while
mapping its surroundings to perform its tasks. The mathemat-
ical formulation of this problem is known as simultaneous
localization and mapping (SLAM) [2]. Various algorithms
for solving the SLAM problem have been proposed and a
number of different sensors have been used, such as laser,
sonar, and visual sensors [2], [3].

Until recently, researchers in robotics have focused on
exact mapping of surroundings [4], [S]. However, there are
applications in which an exact map is not required. For
example, if we are developing an indoor service robot, it
may be enough to know which room (or which corner of the
room) the robot is located in order to perform its task as long
as the robot can avoid obstacles and move from one room to
another. For this type of applications, if a robot can operate
using a simpler map which requires less memory and compu-
tation, then we can implement light-weight localization and
mapping algorithm on light-weight, low-cost robot platforms.
While a simpler map is desired, the map needs to contain
essential information to distinguish one place from another
and a means for a robot to move from one place to another.
For this objective, we propose an actionable topological
map (ATM) using visual features, which is an augmented
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topological map with motion information. Furthermore, in
order to improve the localization accuracy and minimize the
memory requirement, our actionable topological map is built
using visual features from nearby objects.

The best example of a topological map is the map of
subway routes and stops. A topological map contains only
vital information about the place without scale, distance,
or direction information. However, the relationship between
locations can be preserved in a topological map. In robotics,
topological mapping is often constructed using visual words
from images [6]-[11]. Visual words are representative visual
features, such as scale invariant feature transform (SIFT)
[12], and it has been reported many times that visual feature
based localization approaches are robust against the challeng-
ing loop-closure problem and have received much attention
recently [13], [14]. In [15]-[17], a topological map is used
to solve a localization problem. But the required image pro-
cessing step of their approaches requires heavy computation.
In addition, the method for estimating a heading direction in
[16], [17] requires an accurate localization on a topological
map to navigate.

The proposed mapping and navigation method is inspired
by how a human gives a direction. When someone gives you
a direction to the place you have never been to before, she
will explain the direction using noticeable landmarks, such
as stores, restaurants, and buildings, and how you should
navigate between those landmarks. Her direction will not
contain detail information such as accurate distances between
landmarks and angles of your heading at each instance.
Our goal is to provide this type of brief instructions to
a robot and make the robot to navigate its surroundings.
In addition, we propose the use of visual features from
nearby objects, called nearby object SIFT (nSIFT) features,
to improve the localization accuracy and minimize memory
and computation time requirements. These nSIFT features
resemble noticeable landmarks that people use when they
give directions.

We have implemented the proposed mapping, localization,
and navigation methods on a light-weight mobile robot plat-
form, iRobot Create [18], which is equipped with webcams.
We present the experiment results which demonstrate that
a mobile robot can easily localize itself and navigate along
various paths using the proposed actionable topological map.
Even when the objects that were used to construct the map
were removed, the robot was able to localize itself using the
map, showing the robustness of the proposed method. While
the mapping phase requires off-line computation, localization
and navigation can be done comfortably in real-time, thanks
to the compact representation of an actionable topological
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Fig. 1. (a)An example of actionable topological mapping. A robot moves
from location S to location E and takes images of surroundings. The
trajectory of the robot is shown as a solid red line. The black dots on
the solid line are the locations at which images are taken. See the text for
more detail. (b) The mobile robot platform based on iRobot Create used in
experiments.

map.

This paper is structured as follows. Section II gives
an overview and describes actionable topological mapping
(ATM). Section III describes a robust localization method
based on Bayesian filtering. The navigation method using an
ATM is described in Section IV. The experimental results
are given in Section V.

II. MAPPING

Suppose that a robot travels from location S to location
E. The robot is equipped with a camera and takes images
as it moves. The robot also records control commands as
it executes. For each image, we extract nSIFT features (de-
scribed below) and cluster them to form a collection of visual
words. An actionable topological map (ATM) is constructed
from the collection of visual words and the history of control
commands. An ATM is a graph G = (V,E), where the
vertex set V is a collection of nodes and E is an edge set.
The locations with distinctive visual words form nodes in
an ATM. A node can contain more than one consecutive
locations at which images were captured if they contain
similar visual words. If (u,v) € FE, two nodes uw and v
are closely located in the physical world and a robot can
move from u to v. A unique feature of an ATM is that, for
each edge, a compound action is associated. If (u,v) € E,
a compound action C,,, is a collection of control commands
used by the robot to move from node u to node v. Figure 1(a)
shows an example (the top diagram shows a trajectory of
a robot and the corresponding ATM is shown below). For
this example, four nodes are detected (A, B,C, and D)
and a compound action is associated with each edge. The
robot stores command history and makes an edge from these
commands. For instance, C'cp is a compound action required
to move a robot from node C to node D and contains two
control commands (go straight and turn right).

We will now describe each step of our mapping algorithm
in detail.

A. nSIFT

Based on the idea that nearby objects can provide better
localization, we extract visual features from nearby objects.

By reducing the number of features extracted from images,
we can also reduce both memory and computation time
requirements. Features from nearby objects can be detected
by using a stereo camera or taking two images at two differ-
ent vantage points to compute disparity values of features.
Taking the advantage of mobility of a robot, we take the
latter approach. Therefore, we assume a robot moves a fixed
distance each time.

A robot takes an image, moves forward by a fixed distance
b, and takes another image. Here, we assume that the
orientation of the camera is perpendicular to the motion of
the robot, so that we can easily emulate a stereo camera.
For each camera, Lowe’s scale invariant feature transform
(SIFT) features [12] are extracted. We then match the SIFT
features from the first image to the SIFT features from the
second image and compute disparity values of all matching
features. Finally, nSIFT features are selected by the nearby
object filter based on the computed disparity values.

An example of extraction of nSIFT features is shown in
Figure 2. Figure 2(a) and 2(b) show SIFT features extracted
from two images. Notice that the camera is moved to the
right. Figure 2(c) shows matched features from two images.
We filter out matched features if they have either very large
(features from very near objects') or small (features from
far objects) disparity values. The selected nSIFT features
are shown in Figure 2(d). These nSIFT features are used
to construct an ATM.

To find matching SIFT descriptors, we use the Hellinger
distance [19] since the Hellinger distance performs better
than the usual Euclidean distance. The Hellinger distance
is used to measure the distance between two [; normalized
histograms. The Hellinger distance of two [; normalized
histograms hy and hs, e.g., SIFT descriptors, is computed

as
d%[ellinger =1- Z \Y; ilt<7’)i7’8(z) (1)
i=1

The Hellinger distance can vary from 0 to 1, O for identical
distributions, and 1 when there is no overlap. The Hellinger
distance is a metric.

B. Visual words

A topological map is a simplified map which shows only
vital information and may not have detailed information. In
visual mapping, a topological map is usually constructed
from visual words, which are a collection of representative
visual features, such as SIFT [7]. For each location at which
an image is taken, a node in a topological map is assigned
and each node contains visual words taken from the image.
The relationship between a pair of nodes is described by
similarity between distributions of visual words of two nodes.

We use a hierarchical vocabulary tree [20] to generate
visual words from extracted nSIFT features. The hierarchical
structure makes it possible to generate visual words with less
computation time. Furthermore, the task of finding a visual

'We have found that features from very near objects are usually outliers
as the robot moves at a certain distance away from the wall.
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An example of extracting nSIFT features from two images. (a) An image taken at the previous location. The red dots represent positions of

detected SIFT features. There are 398 SIFT features. (b) An image taken at the current location. The yellow dots represent positions of detected SIFT
features. There are 423 SIFT features. (c) Matching features between two images (a) and (b). A total of 137 matches are found. (d) Filtered nSIFT features.

There are 77 nSIFT feature pairs.

word for a given nSIFT feature is faster when a hierarchical
vocabulary tree is used. A hierarchical vocabulary tree is con-
structed by running the k-means algorithm [21] recursively.
For example, if we want to generate 10,000 visual words,
it requires a tree with four levels with k¥ = 10. Given a
vocabulary tree, it requires at most 40 comparison operations
before a corresponding visual word is found, instead of direct
10,000 comparison operations.

For better visual feature matches, we modified the k-
means algorithm by replacing the Euclidean distance with
the Hellinger distance.

C. Actionable topological mapping

Let n be the total number of visual words and I; be the
image taken at time t. Let h0(+) : {1,...,n} — N be a
histogram of visual words from I; and ho( ) is the number
of occurrences of the i-th word from I;. Let §; be a unique
word indicator function from the histogram of visual words
and it is defined as follows:

5:(4) :{ .

If a visual word appears in many images, this word
is not effective for disambiguating locations. Hence, we
borrow the idea from information retrieval [22], [23] and
weight each word by its importance, i.e., the i-th word is
weighted by log(N/n;), where N is the number of nodes
and n; is the number of times the i-th word appears in the
sequence of nodes. Based on these weights, we compute a
weighted indicator vector 5, for i image Iy, such that (5t( ) =
log(N/n;)é:(i) for all 4.

The image I; is declared as a node in an ATM if
SO 6:(i) > 61, where 0; is a threshold. If the previous
image I;_; is not a node in the ATM, I; is declared as a
new node. If I;_; is a node, we measure similarity between
I;_, and I; using the histogram intersection kernel [24]:

E InlIl

If k(st_l, 5t) > @5, where 05 is another threshold, and the
control command between I;_; and I; is GS, we merge I;
into the node containing I;_;. Otherwise, I, is declared as a
new node. By repeating this process for all consecutive pairs

if hY(i) >0
otherwise.

(©))
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of images, we find nodes for the ATM. For robustness, a node
is declared when three (or more) consecutive images satisfy
the threshold 6. The threshold parameters are required
to be chosen carefully to make the trade-off between the
complexity of the ATM and the resolution of the map. When
there are many nodes, the ATM can be complex but the
resolution of localization is finer. On the other hand, when
there are fewer nodes, the resolution of localization is coarse
but we have a simpler ATM.

A pair of consecutive nodes in an ATM is connected
by an edge. We associate each edge with a compound
action which is a collection of all control commands be-
tween the nodes connected by the edge. For example, in
Figure 1(a), Cap = {GS,RT,GS,GS,GS,GS}, Cpc =
{GS,GS,LT,GS,GS,GS,GS,LT,GS,GS}, and Cop =
{GS,GS,RT,GS,GS}.

III. LOCALIZATION

In order to perform various tasks, a robot needs to localize
itself with respect to the ATM. Since the robot’s position
and orientation can be different from its first visit or the
map may have been built by another robot, a deterministic
localization method does not provide reliable results. Hence,
a probabilistic method is applied for localization using an
ATM.

A. Bayesian filtering

Consider an ATM represented as a graph G = (V, E).
Suppose there are m nodes in the ATM and V =
{vi,...,um}. Let X € V be the location of a robot at
time k. With respect to the ATM, we can consider that a
robot is moving along the directional edges of the ATM. Let
7y, be the measurements collected at time k. In our case,
the measurement 7, is the visual word indicator vector, i.e.,
Zp = Op. Let ZF = {Z1,Zs,...,Zx}, a collection of all
past measurements up to time k. The goal of filtering is to
compute P(X}|Z*) for every k.

We denote the event {Xj, = v;} by V,c Applying Bayes’
rule, we have

P(Zi| Xy, ZF"1)P(X | ZF1)
Sy P(Z| Vi, ZE=Y) P(V] | ZE-1)
P(Z| X)) P(X3,| 2% 1)
Sy P(Zi V)PV | Z2+=1)

P(Xy|Z") =




where the second equality is due to the Markov property.
P(V{|Z*~1) can be computed as follows:

PV Z" 1) STPWEL V2R
r=1

ZP(VICJ'|V/:71)P(V/:71|ZIC_1)~
r=1

Hence, the posterior P(X|Z*) can be computed recursively,
if the dynamics model P(X|Xj_1), i.e., P(V]|V)_,), and
the measurement model P(Z|X}) are available.

B. Dynamics model

The dynamics model is P(X|Xx_1), which is the tran-
sition probability of moving from node Xj_; at time k — 1
to X} at time k. For simplicity, we assume that the robot
follows a random walk on the ATM and use the following
dynamics model:

1
P(Xp|Xg—1) o exp (— 5
Odist

dX(Xkan1)> , @

where dx (u,v) is the distance between node u and node
v, i.e., the length of the shortest path from v to w in the
ATM. o7, is a scaling parameter and defined as o3, =
k||Cx,_, x|, where & is a constant and ||Cx,_, x, | is the
number of action commands from X;_; to X. Hence, Jﬁist
is large for a longer distance and small for a shorter distance.

C. Measurement model

The measurement model P(Z|X}) is defined as follows:
P(Zy|Xy) < sz(Zk, Z(Xk)), S

where sz (x,y) is a similarity function, giving the similarity
between x and y, and Z(X},) is the measurements associated
with the node Xj. In our case, Z(X}j) is the weighted
indicator vector stored in the node represented by Xy, of the
ATM. We used the set intersection measure as the similarity
function sz as follows:

Z?:l min(f(;t (7;): (SAS (’L))
max(|d |, [0s])

sz(0¢(i),05(i)) = ,

where |0 = S, 6(d).
IV. NAVIGATION

To navigate a robot from one node in an ATM to another
node, we can first check if there is a valid path, a path
connecting two nodes with directed edges in the graph. If a
valid path is found, we need to determine the current heading
of the robot. By computing two posterior distributions, one
for the forward movement and another for backward, we can
find the heading of the robot.

Next, we search for the shortest path and the robot moves
along the shortest path. Consider the edge (u,v) of the
shortest path. When a robot moves from node u to node v on
the ATM, we simply apply the compound action C,,,, to move
the robot. However, due to the odometry error, the robot may
have not arrived at v or it may have passed v. Hence, after

Hallway

(b)

Fig. 3. (a) A map of the hallway used in the first experiment. The red
line is the path of a mobile robot during the mapping phase. The length of
the path is about 103 m. The red dots are locations where the images are
captured. (b) An ATM constructed by the proposed algorithm.
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Fig. 4. (a) A photo of the lobby used in the second experiment. The
red path indicates the trajectory of the mobile platform during the mapping
phase. The length of the path is about 38 m. (b) An ATM constructed by
the proposed algorithm.

executing the compound action, the robot localize itself using
the localization method described above until a known node
is found. If the robot detects node v, it moves forward by
executing a series of G.S control commands until the robot
leaves the node.

V. EXPERIMENTAL RESULTS

The mobile robot platform used in the experiment consists
of iRobot Create [18], a HP Mini 110 netbook, and two
Logitech C250 webcams (see Figure 1(b)). Two webcams
are placed perpendicular to the direction of motion of the
mobile robot in order to emulate a stereo camera using a
single camera (for each side).

The first experiment was conducted in a hallway as shown
in Figure 3(a). Since the hallway does not have many
distinctive visual features and similar patterns repeat, it is an
extremely difficult environment for localization. The length
of the path that the robot has traveled is about 103 m and the
path contains four left turns and one loop. The second exper-
iment was conducted in a lobby as shown in Figure 4(a). In
this experiment, we demonstrate the effectiveness of nSIFT
for navigating in a wide area.

A. Actionable topological mapping

In the hallway, the robot took 1,029 images from each
camera, a total of 2,058 images. The robot also recorded
control commands between each image captures. Between
each consecutive image captures, the robot was commanded
to move at the speed of 10 ¢m/s for one second, hence, the
baseline distance b = 10cm in our experiments. However,
the actual length of each movement was between 10cm
and 12 c¢m due to the limitations of hardware. From 2,058



images, a total of 109,679 SIFT features were detected and,
among these SIFT features, 14,122 nSIFT features were
found. Hence, there was a reduction of 87.1% compared
to regular SIFT features when nSIFT features are used. We
selected features with disparity values between 30 pixels and
100 pixels as nSIFT features.

On the other hand, in the lobby, the robot took 381 images
from each camera, a total of 762 images. The number of im-
ages of the second experiment was less than first experiment,
but a total number of 411,488 SIFT features were extracted.
51,914 nSIFT features were found, a reduction of 87.4%.

We now describe the hallway experiment in detail. We
constructed a hierarchical vocabulary tree with four levels
and five branches to make 625 visual words. From our
experiment, we found that 625 visual words were enough
to disambiguate locations. We think that it was possible
because nSIFT features are highly distinctive for the purpose
of localization.

For the construction of an ATM, the following threshold
parameters were used: ¢; = 11.554 and 6, = 25.0373. 6,
was set by computing the mean value of image scores (for
an image I, its score is computed as Y ;' 6:()). 05 is set by
computing the mean value of different score values between
St_l and 5;. Figure 5 shows the score of nSIFT features
for each left-right image pairs and detected nodes for the
ATM. The algorithm detected 27 nodes. Note that the lengths
between nodes are not proportional to the actual distances the
robot traveled. Similarly, an ATM of the lobby was made in
the same way. Figures 3(b) and 4(b) also show the resulting
ATMs.

B. Localization

Once an ATM is constructed, a robot can be localized with
respect to the ATM as explained in Section III.

We placed a robot between nodes and commanded the
robot to move to a certain node. We assumed that the robot
does not know its current location when it starts moving, i.e.,
it also needs to solve the kidnapping problem. We considered
three cases: (Case 1) the robot moves in the hallway from
node 10 to node 18; (Case 2) the robot moves in the lobby
form node 8 to node 1; (Case 3) the robot moves the same
as Case 2 but all SIFT features are used for localization. For
Case 1 and Case 2, nSIFT features are used for localization.

Figure 6 shows the posterior of the current location
computed by the Bayesian filter at different times for Case 1.
While the hallway is featureless and difficult to localize using
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Fig. 5. Scores of nSIFT features for a sequence of 1029 left-right image
pairs. The score for image I is computed as >, 0¢(¢). Light red regions
are declared as nodes. A bold red line shows the level of 67.
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Fig. 6. The posterior of the current location at different times for Case
1. A robot moved from an edge (between node 9 and node 10) to node 18
in the hallway. When a robot started moving, the robot assumed a uniform
prior on its starting location.
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Fig. 7. Posteriors of the current location at different times for Case 2
(nSIFT features are used) and Case 3 (all SIFT features are used). A robot
moves from node 8 to node 1 in the lobby. When a robot starts moving,
the robot assumes a uniform prior on its starting location.

visual features, the proposed algorithm which combines
nSIFT and a Bayesian filter correctly determines the current
location of the robot.

The localization results for Case 2 and 3 are shown in
Figure 7. We can verify that nSIFT is better suited for
localizing a robot (Case 2) than using all SIFT features (Case
3). Hence, we can use a less number of features for better
localization using nSIFT, which is ideal for light-weight,
low-cost robots.

C. Navigation

We have conducted a number of experiments using dif-
ferent starting and ending locations in both environments.
First, a user specifies the destination node in the ATM and
command the robot to move. Then the robot localizes itself
on the ATM. When a robot is on a node of the ATM, it
moves forward 10 cm. If a robot is at an edge of the ATM,
the compound action associated with the edge is executed.



Environment | command start destination trajectory

hallway visit 11, edge 9-10 node 9 10-11-10-9
node 9
hallway node 18 edge 9-10 node 18 10-11-...-18
hallway node 9 edge 5-6 failed 6-fail
lobby node 8 node 1 node 8 1-2-...-8
lobby node 1 node 8 node 1 8-7-...-1
lobby node 2 edge 3-4 node 2 4-5-4-3-2
lobby node 2 node 8 failed 8-7-6-5-4-fail
TABLE I

ATM-BASED NAVIGATION RESULTS

When a robot starts in the hallway, the robot does not
know its current location and its heading direction. The
robot is placed on an edge between 9 and 10, we gave a
command to the robot to visit node 11 and return to node 9.
The robot moves forward and detect its location as node 10
and detects its heading direction. The robot executes Cg,11
to visit node 11. The compound action command C'g 1;
contains a LT command and the robot makes a left turn
successfully. When the robot arrives at node 11, it turns
around and execute C11,19 and Cjg 9 to return to node 9.
Notice that the compound action commands C1,19 and Cig g
are constructed on the fly. For example, the LT command
in Cjo,11 is replaced by a RT command in Ci; 10. The
localization was relatively easier in the lobby since each
node contains a large number of distinctive visual words.
The experimental results on navigation is summarized in
Table I. The mobile robot successfully navigated using the
ATM except two cases. In the first failed case, the edge
between node 7 and node 8 of the ATM constructed for the
hallway contains R7" command right after node 7. The robot
failed to detect node 7 and kept moving forward to search
for a known node until it hit the wall. We plan to correct this
problem by moving a robot in the hallway until it localizes
while avoiding a front wall using a sonar sensor. The second
failed case occurred in the lobby. The robot did not move
straight and moved away from the desired trajectory and left
the area for which the map was built. Again, we plan to
correct this problem using sonar sensors so that the robot
can move straight along the wall while keeping a distance
from the wall.

VI. CONCLUSION

We presented an actionable topological map which in-
cludes compound actions such that a robot can navigate the
physical world using a topological map. In order to improve
localization accuracy and reduce memory and time require-
ments, we have introduced nSIFT features. In addition, we
instrumented a mobile robot platform with two side cameras
for better localization. The experimental results show that the
proposed method is a promising approach for a light-weight
robot platform to navigate in a complex environment when
accurate metric localization is not required. We are currently
developing a method to maintain a fixed distance from the
wall and avoid obstacles using sonar sensors.
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